Sharp asymptotics in a fractional Sturm-Liouville problem

نویسندگان

چکیده

The current research of fractional Sturm-Liouville boundary value problems focuses on the qualitative theory and numerical methods, much progress has been recently achieved in both directions. objective this paper is to explore a different route, namely, construction explicit asymptotic approximations for solutions. As study case, we consider problem with left right Riemann-Liouville derivatives, which our analysis yields asymptotically sharp estimates sequence eigenvalues eigenfunctions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Eigenvalues for a Sturm-Liouville Problem

We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...

متن کامل

Inverse Sturm-Liouville problem with discontinuity conditions

This paper deals with the boundary value problem involving the differential equation begin{equation*}     ell y:=-y''+qy=lambda y,  end{equation*}  subject to the standard boundary conditions along with the following discontinuity  conditions at a point $ain (0,pi)$  begin{equation*}     y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x),  a_1 , a_2$ are  rea...

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Spectral asymptotics for inverse nonlinear Sturm-Liouville problems

We consider the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t), u′(t)) = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2), u(±1/2) = 0, where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an eigenvalue parameter. To understand well the global structure of the bifurcation branch of positive solutions in R+ ×Lq(I) (1 ≤ q < ∞) from a viewpoint of inverse problems, we establish the...

متن کامل

Eigenvalue Asymptotics for Sturm–liouville Operators with Singular Potentials

We derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued potentials from the space W 2 (0, 1), α ∈ [0, 1], and Dirichlet or Neumann–Dirichlet boundary conditions. We also give application of the obtained results to the inverse spectral problem of recovering the potential by these two spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2021

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1515/fca-2021-0031